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Abstract. We study the odderon contribution to elastic pp and pp̄ scattering at high energies. Different
models for the odderon–proton coupling are considered and their effects on the differential cross section
in the dip region are investigated. We use a Regge fit by Donnachie and Landshoff as a framework and
replace its odderon contribution by the different models. We consider two models for the odderon–proton
impact factor proposed by Fukugita and Kwieciński and by Levin and Ryskin. In addition we construct
a geometric model of the proton which allows us to put limits on the size of a possible diquark cluster in
the proton. All models are able to describe the data well. The two models for the impact factor require
the strong coupling constant to be fixed rather precisely. In the geometric model a relatively small diquark
size is required to describe the data.

1 Introduction

The odderon is an interesting but elusive object. Its his-
tory goes back to 1973 when the possible contribution of
an exchange carrying negative C parity to very high en-
ergy collisions was first discussed [1]. The leading contri-
bution to hadronic scattering processes is in general well
described by the exchange of a pomeron with intercept
α � 1.09, resulting in slowly increasing cross sections,
σ ∼ sα−1 [2]. The pomeron carries vacuum quantum num-
bers and therefore leads to a high energy behaviour of
hadronic cross sections that is equal for pp and pp̄ scatter-
ing. In lowest order in QCD the pomeron can be identified
with the exchange of two gluons in a colour singlet state.
The odderon is the C = −1 partner of the pomeron. In
lowest order it can be understood as the exchange of three
gluons in a symmetric colour singlet state. As in the case
of the pomeron, the odderon exchange gives a contribu-
tion to the cross section that behaves like a power of the
energy, sαO−1. The odderon intercept αO is expected to
be close to one — in contrast to the intercept of C = −1
reggeon exchanges, which is around 0.5. For a review of
the historic roots of the odderon and some relevant refer-
ences we refer the reader to [3].

The experimental evidence for the existence of an odd-
eron, however, remains rather scarce. For a long time the
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odderon search concentrated on observing a difference be-
tween the cross sections for pp and pp̄ scattering at high
energies. The odderon causes such a difference because
it carries negative C parity and thus gives opposite con-
tributions to these cross sections. For an intercept larger
than 1 this difference should in fact increase with energy
and give a visible effect. But recent perturbative results
indicate that the intercept is smaller than or equal to 1,
so that the difference does not increase. The experimen-
tal data actually disfavour a sizable effect of the odderon
in this difference. More sensitive to the odderon exchange
than the cross section is the ratio of the real to the imag-
inary part of the scattering amplitude in the forward di-
rection. But also in this case no indication of an odderon
exchange has been found [4]. To date the only evidence for
the existence of the odderon is found in the t-dependence
of pp and pp̄ elastic cross sections at high energy. The pp
data show a characteristic dip at |t| � 1.3GeV2, whereas
the pp̄ data only flatten off at that t. Unfortunately, there
are only few pp̄ data available [5,6]. Figure 1 shows the
data [5] in the relevant region of the dip. A good descrip-
tion of all available data [5–9] for elastic pp scattering was
given by Donnachie and Landshoff [10]. In this descrip-
tion (see also Sect. 2.1 below) the presence or absence of
the dip originates from the exchange of the odderon. Also
the behaviour of the elastic cross sections at large t is
well described by odderon exchange. A number of aspects
of elastic pp and pp̄ scattering has been discussed in the
literature particularly in the light of odderon physics; see
for example [11–18]. No other successful description of the
data without an odderon has been found so far.

Recently there has been renewed interest in the odd-
eron which has especially concentrated on two areas. One
of these areas is the perturbative treatment of the odderon
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Fig. 1. Differential cross section for elastic pp and pp̄ scattering
in the dip region for s1/2 = 53GeV; data taken from [5]

and in particular the determination of the odderon inter-
cept [19–27]. Perturbation theory can be applied to this
problem if a scattering process involves a large momen-
tum scale. The perturbative odderon is described by the
Bartels–Kwieciński–PraszaLlowicz equation [28,29] which
resums large logarithms of the centre-of-mass energy. It
has the form of a Bethe–Salpeter type equation for the
interaction of a system of three reggeized gluons in the
t-channel. The interaction of the gluons induces a non-
trivial energy dependence of the cross section, i.e. it leads
to an intercept different from one. A number of interest-
ing aspects of the perturbative odderon has been stud-
ied in [30–43]. In [31,32] it was shown that this system
of three reggeized gluons is equivalent to an integrable
model. Eventually the study of this system lead to the
determination of its ground state energy [25,26]. It was
found to correspond to an intercept slightly below 1. There
exists, however, a special solution with intercept exactly
equal to 1 [27]. In [44] even the whole energy spectrum
of the perturbative odderon was found. Another aspect of
the perturbative odderon is its rôle played in the theory of
unitarity corrections to the perturbative (BFKL) pomeron
[45,46]. This problem was addressed in [47] where the
perturbative pomeron–odderon–odderon vertex was cal-
culated.

The other area on which interest has concentrated is
to find more exclusive processes in which the odderon
contribution should be dominant. Some processes have
been considered which can be calculated perturbatively.
The most interesting among them is the diffractive photo-
or electroproduction of ηc or other heavy pseudoscalar
mesons at HERA [48–50]. If these mesons have charge
parity +1 pomeron exchange cannot contribute to their
photo- or electroproduction [51]. However, the correspond-
ing cross sections are estimated to be rather small, in the
range of several tens of pb or even lower. Much larger cross
sections are expected for the diffractive production of light
pseudoscalar and tensor mesons [52,53]. In this case the
theoretical predictions require the use of nonperturbative
methods and models [54–56]. But recent measurements
of pion photoproduction by the H1 collaboration did not
show any signs of the odderon [57,58]. The reasons for this
failure of the prediction are not clear at the moment, and

the presence of this process should in fact not be specific
to the model assumptions.

Recently the investigation was proposed of certain
charge asymmetries in diffractive processes [59,60]. These
asymmetries arise from pomeron–odderon interference and
are expected to provide a good chance of finding the odd-
eron at HERA. Another process of interest will be the
quasidiffractive production of ηc (or other pseudoscalar or
tensor) mesons in collisions of real or virtual photons at
a future linear collider like TESLA [61]. An interesting
process for the odderon search is also double-diffractive
production of vector mesons at Tevatron or at the LHC
[62].

The apparent absence of the odderon in the photo-
production of pions mentioned above is rather surprising.
Its cause is an open question which clearly needs to be
clarified. One obvious possibility is that for some reason
the nonperturbative model used here does not work prop-
erly in this particular situation and that the cross sec-
tion has thus been overestimated. This uncertainty can be
excluded in perturbative situations. Therefore the inves-
tigation of perturbative processes involving the odderon
becomes even more important.

A theoretical uncertainty that is inherent even in the
perturbatively calculable processes like diffractive ηc pro-
duction is the exact form of the coupling of the odderon
to the proton, i.e. the odderon–proton impact factor. A
few very general facts about its structure are known, but
some model assumptions always need to be made. But it is
well known that the proton structure can in fact have very
dramatic effects on this impact factor. In the extreme case
that the proton would exhibit a quark–diquark structure
with a point-like diquark, for example, the impact factor
even vanishes [13,63]. It was pointed out [63] that even a
diquark cluster of a size as large as 0.3 fm could explain
the experimental limit for the difference in the ratios of
the real and imaginary part for pp and pp̄ forward scat-
tering. It is the aim of the present paper to study the
influence of the proton structure on the odderon coupling
and compare it with the available data for elastic pp and
pp̄ scattering in the dip region. As a framework we use
the fit by Donnachie and Landshoff [10]. We replace the
odderon–proton coupling used in that fit by a model for
the proton structure which allows us to study the influence
of a possible quark–diquark structure of the proton. The
squared momentum transfer t in the dip region appears
to be large enough to make the use of the simple picture
of perturbative three gluon exchange possible, in which
the odderon has intercept 1. A slow energy dependence
of the odderon due to logarithmic enhancements should
not have a sizable effect in the restricted range of energies
for which data are available. In a similar way we also test
other odderon–proton impact factors that have been used
recently in diffractive ηc production. The crucial point is
that we are now able to see whether they are compati-
ble with the only existing data which clearly involve an
odderon exchange.

This paper is organised as follows. In Sect. 2.1 we briefly
sketch the original Donnachie–Landshoff fit and describe
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in Sect. 2.2 two different models for the odderon–proton
impact factor proposed in the literature. In Sect. 2.3 we
present a geometrical model for the proton structure in po-
sition space. We show how this model can be implemented
in a more general framework of high energy scattering
in position space when applied to odderon exchange. In
Sect. 3 we present the results for the differential cross sec-
tion using these different models and confront them with
the data. Finally, we give a brief summary and conclusions
in Sect. 4.

2 Odderon–proton coupling
and proton structure

In this section we discuss different ways in which the
odderon–proton coupling can be described. We start by
giving a short description of the Donnachie–Landshoff
(DL) fit and its making use of the odderon. We then
consider the perturbatively motivated description of the
odderon–proton coupling via impact factors. These im-
pact factors are usually used in perturbative calculations
and most naturally written in momentum space. We dis-
cuss two different models of the impact factors that have
been proposed in the literature. Finally we turn to a geo-
metrical picture of the proton as a three-quark system in
which we can easily study the effects of a possible quark–
diquark structure in the proton. Obviously this geometri-
cal model of the proton is most conveniently formulated
in position space. We therefore find it useful to give a de-
scription of odderon exchange that works entirely in po-
sition space. We start from a general framework for high
energy scattering and then derive a description of pertur-
bative three gluon exchange in position space. The use of
a simple picture of the odderon as an exchange of three
perturbative gluons in the present paper is motivated by
the fact that we are only considering the dip region of
pp scattering at around |t| � 1.3GeV2. This momentum
transfer, however, is at the lower edge of the applicabil-
ity of perturbation theory. A study of the dip region in
a nonperturbative framework would therefore be very de-
sirable. Although such a study is beyond the scope of the
present paper we hope to pave the way for it by deriving
the perturbative description of odderon exchange in posi-
tion space in a more general framework which can also be
used to implement nonperturbative models.

2.1 The Donnachie–Landshoff fit

A successful phenomenological description of all available
pp and pp̄ elastic scattering data in the framework of
Regge theory was given by Donnachie and Landshoff [10].
This description is based on a number of exchanges in the
t-channel: pomeron, reggeon, odderon, double pomeron,
triple pomeron, pomeron plus two gluons, and reggeon
plus pomeron. These exchanges are explicitly given as con-
tributions to the scattering amplitude T (s, t). For later use
we would like to single out the odderon contribution TO
to that sum,
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Fig. 2. The Donnachie–Landshoff fit for the differential elastic
pp cross section

T (s, t) = TO(s, t) + TDL(s, t), (1)

where TDL denotes all other contributions to the scatter-
ing amplitude, including the C-odd reggeon contribution.
The differential cross section is then obtained from the
scattering amplitude T via

dσ
dt

=
1

16πs2
|T (s, t)|2 . (2)

The different contributions to the scattering amplitude
come with a number of parameters which have been fitted
to all available data for elastic pp scattering in [10]. The
details and all parameters can be found in that reference.
In the present paper we do not attempt to improve the
Donnachie–Landshoff fit. However, there appears to be a
misprint in [10]. In order to reproduce a successful fit to
the data the cutoff parameter t1 for the gluon propagator
as well as the parameter t0 describing the charge distribu-
tion radius of the proton should be chosen as

t0 = t1 = 0.3GeV2, (3)

instead of t0 = t1 = 300MeV2 as given in (17) of the
original paper [10]. With these changes in the original pa-
rameters we can reproduce the Donnachie–Landshoff fit.
It is shown together with the relevant data in Fig. 2 where
we have chosen to restrict ourselves to the dip region rel-
evant for our study.

The odderon contribution is particularly important at
large t and in the dip region. The dip originates from in-
terference effects of the odderon contribution with other
contributions, in particular with those of pomeron and
double pomeron exchange. At large t the differential cross
section is even dominated by odderon exchange, leading to
the observed t−8 behaviour. In [10] the large-t data have
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Fig. 3a–c. Diagrams contributing to the odderon–proton im-
pact factor

therefore been used to fix the normalization parameter of
the odderon contribution TO. In [64] it is argued that this
dominance of the odderon at large t comes about because
the exchange of three gluons permits one to distribute the
momentum transfer evenly between the three quarks in
the proton. Accordingly, that dominant contribution cor-
responds to a situation in which each of the three gluons
is coupled to a different quark in the proton; see diagram
(c) in Fig. 3. Also at smaller values of t the authors of [10]
use a coupling of the odderon to the proton which is given
only by this diagram. By selecting a single diagram only,
however, gauge invariance is lost and the corresponding
contribution becomes divergent as one of the gluon mo-
menta goes to zero. Therefore the gluon propagator needs
to be regularized by introducing the cut-off parameter t1
(see above). With this procedure the coupling of the odd-
eron to the proton used in [10] leads to a reasonably good
agreement with the data also at intermediate values of t
as shown in Fig. 2.

A note concerning the terminology used in [10] seems
to be in order. In that paper the odderon contribution is
called “three gluon exchange” but is in fact a pure C = −1
odderon exchange. In principle, it is of course possible to
have three gluons in a C = +1 state, that is in an an-
tisymmetric colour state. The fact that the three gluon
exchange in the DL fit carries only C = −1 quantum num-
bers is due to the particular coupling of the three gluons
to the proton chosen in [10], in which each of the three
gluons is coupled to a different quark; see diagram (c) in
Fig. 3. This immediately implies that the three gluons are
in a symmetric colour state. (See also (28) and the cor-
responding discussion in Sect. 2.3 below.) However, gauge
invariance requires one to include all possible ways of cou-
pling the three gluons to the three quarks in the proton, in
particular also diagrams of the type (a) and (b) in Fig. 3.

Finally, we would like to point out that the exchange
of a three gluon state carrying positive C parity is not ex-
pected to change the DL fit. Due to reggeization a C = +1
perturbative state of three gluons has in the high energy
limit the same analytic properties as a pomeron made
of two gluons [65] (see also [47]). In a fit to the data
such a contribution would therefore be absorbed by the

full pomeron exchange and is thus effectively already con-
tained in the DL fit. It is therefore not necessary to con-
sider a C = +1 three gluon exchange separately.

2.2 Impact factors

In the approach using impact factors the odderon contri-
bution to the elastic proton–proton scattering amplitude
is written in factorised form as

TO(s, t) =
s

32
5
6
1
3!

∫
d2δ1t
(2π)4

d2δ2t
(2π)4

[
Φp(�δ1t, �δ2t, �∆t)

]2
× 1
�δ21t
�δ22t( �∆t − �δ1t − �δ2t)2

, (4)

where the integral is over transverse momenta only. Here,
�∆t is the total transverse momentum transferred in the
t-channel, and t = − �∆2

t . The last factor in the integral
consists of the three gluon propagators which we assume
to model the odderon at large t. The 5/6 originates from
a colour factor and the 1/3! is implied by the exchange of
three identical gluons. The impact factor Φp(�δ1t, �δ2t, �δ3t)
describes the coupling of the odderon to the proton; it
is not known from first principles. But some of its prop-
erties can be derived from general principles. In order to
arrive at a gauge invariant expression for the impact factor
one needs to take into account all possible ways to couple
the three gluons to the three quarks in the proton. That
means that one has include all three types of diagrams
in Fig. 3 and the corresponding permutations of the gluon
lines. The colour neutrality of the proton requires that the
impact factor vanishes if one of the three transverse gluon
momenta �δit vanishes,

Φp(�δ1t, �δ2t, �δ3t)
∣∣∣
�δit=0

= 0, i ∈ {1, 2, 3}, (5)

which ensures that potential infrared singularities due to
the gluon propagators in the integral (4) are cancelled.
The above property implies that the impact factor has
the general form

Φp(�δ1t, �δ2t, �δ3t)

= 8(2π)2g3

[
F ( �∆t, 0, 0) −

3∑
i=1

F (�δit, �∆t − �δit, 0)

+2F (�δ1t, �δ2t, �δ3t)

]
, (6)

where �∆t =
∑3
i=1

�δit, and F (�δ1t, �δ2t, �δ3t) is a form factor.
The three terms in square brackets correspond (in the or-
der given in (6)) to the diagram types (a), (b), and (c)
in Fig. 3, respectively. The form factor F is related to the
structure of the proton. Its exact form is unknown and
needs to be modelled.

One model for the form factor F was given by Fukugita
and Kwieciński in [66],
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F (�δ1t, �δ2t, �δ3t) (7)

=
A2

A2 +
1
2

[
(�δ1t − �δ2t)2 + (�δ2t − �δ3t)2 + (�δ3t − �δ1t)2

] .
The parameter A is chosen to be half the ρ mass, A =
384MeV. This model for the form factor has recently been
used in the estimate of the cross section for diffractive ηc
photo- or electroproduction at HERA [48–50]. In these
references a rather large value of αs = g2/(4π) = 1 has
been used for the strong coupling constant. This value was
motivated by the use of a similar value in an estimate of
hadronic cross sections in the two gluon model of [67].

Another model for the form factor F was proposed
by Levin and Ryskin [14]. Their ansatz is motivated by a
nonrelativistic quark model with oscillatory potential. Its
explicit form is

F (�δ1t, �δ2t, �δ3t) = exp

(
−R2

p

3∑
i=1

�δ2it

)
. (8)

The parameter Rp is supposed to be of the order of mag-
nitude of the proton radius. In [14] a value of 2.75GeV2

is given for the quantity R2
p. We assume that the mis-

print is located in the exponent of the units and thus use
R2
p = 2.75GeV−2. Assuming the missing minus sign to be

in the exponent of Rp instead would imply an unusually
small proton radius. The authors of [14] suggest to choose
αs = 1/3.

2.3 High energy scattering in position space

In this subsection we give a very short recapitulation of
the basic ideas of the treatment of high energy scattering
developed by Nachtmann [68], for details and further jus-
tification we refer the reader to the original article. The
method is based on the functional representation of scat-
tering matrix elements and the WKB method. We first
consider quark–quark scattering amplitudes in an external
colour field using the WKB approximation. The quanti-
sation is done by functional integration. Nucleon–nucleon
scattering amplitudes are obtained from scattering ampli-
tudes of clusters of quarks by averaging over wave func-
tions in transverse space. This is an alternative to the
treatment of high energy scattering in momentum space
and particularly suited for investigating the effects of the
spatial structure of the hadrons. In the present paper we
use perturbative three gluon exchange to model the odd-
eron, but the method presented here also allows one to
easily incorporate nonperturbative models.

The first step is to transform the S-matrix element of
two quarks with incoming momenta p1, p2 and outgoing
momenta p3, p4 into a Green function. This is done by
means of the LSZ reduction formalism,

〈p3p
out
4 |p1p

in
2 〉 = Z−2

ψ

×
∫

d4x1 · · ·d4x4 exp [i(p3x3 + p4x4 − p1x1 − p2x2)]

× 〈T ū(p3)f(x3)ū(p4)f(x4)f̄(x1)u(p1)f̄(x2)u(p2)〉, (9)

where f(x) = (iγ∂ −m)ψ(x) and Zψ is the wave function
renormalization.

Next, the four point function 〈Tψ(x3)ψ(x4)ψ̄(x1)
ψ̄(x2)〉 contained in the r.h.s. of (9) is expressed as a func-
tional integral over the quark and the gluon fields, ψ and
B respectively, written formally as

〈Tψ(x3)ψ(x4)ψ̄(x1)ψ̄(x2)〉 (10)

=
∫

DψDψ̄DBψ(x3)ψ(x4)ψ̄(x1)ψ̄(x2) exp[−iSfull QCD],

where Sfull QCD is the full QCD action. The fermion inte-
gration is Gaussian and can therefore be performed, yield-
ing

〈Tψ(x3)ψ(x4)ψ̄(x1)ψ̄(x2)〉 =
∫

DB det[−i(iγD −m)]

× [SF(x3, x1;B)SF(x4, x2;B)
+ SF(x3, x2;B)SF(x4, x1;B)] exp[−iSpure QCD], (11)

which contains the functional determinant of the Dirac
operator, and the quark propagators SF(xi, xj ;B) in the
external colour potential BFµ . The functional integration
is now to be performed only over the gluon fields with
the pure QCD action (i.e. without quark contribution) in
the measure. If we concentrate on lowest order exchange
the determinant can be set to one. Furthermore, if we
are interested only in momentum transfer small compared
to the total energy the second (u-channel) term in the
integrand can be neglected. Collecting all factors we finally
obtain

〈p3p
out
4 |p1p

in
2 〉 ≈ Z−2

ψ

∫
DBS(p3, p1;B)S(p4, p2;B)

× exp[−iSpure QCD], (12)

where S(pi, pj ;B) is the scattering matrix element of a
quark with momentum pj to one with momentum pi in
an external colour field B.

In the next step we have to find a suitable form for
the S-matrix element S(pi, pj ;B). One can show [68] that
the quark scattering matrix elements S(pi, pj ;B) in an
external field can be expressed as a generalized WKB ex-
pression

S(pi, pj ;B) = ū(pi)γµu(pj)P exp
[
−ig

∫
Γ

Bρdxρ
]

×
(
1 +O

(
1
p0
i

))
, (13)

where we denote by B the Lie-algebra valued gauge poten-
tial. The path-ordered integral is taken along the classical
path Γ . From the scattering amplitudes for single quarks
in the gluon field we obtain, according to (12), the nonper-
turbative quark–quark scattering amplitude by integrat-
ing the product of the two scattering amplitudes over the
gluon field. More specifically, consider two quarks travel-
ling along the light-like paths Γ1 and Γ2 given by

Γ1 = (x0,�b/2, x3 = x0) and

Γ2 = (x0,−�b/2, x3 = −x0), (14)
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corresponding to quarks moving in opposite directions
with the velocity of light, with an impact vector �b in
the x1x2- plane (referred to in the following as the trans-
verse plane). Let Vi(±�b/2) be the phases picked up by the
quarks along these paths,

Vi(±�b/2) = P exp
[
−ig

∫
Γi

Bµ(z)dzµ
]
. (15)

Then the S-matrix element for two quarks with momenta
p1, p2 and colour indices α1, α2 leading to two quarks of
momenta p3, p4 and colours α3, α4 is [68]

Sα3α4;α1α2(s, t) = ū(p3)γµu(p1)ū(p4)γµu(p2)V, (16)

where

V = iZ−2
ψ

〈∫
d2be−i�q·�b

[
V1

(
−
�b

2

)]
α3α1

×
[
V2

(
+
�b

2

)]
α4α2

〉
. (17)

Here 〈·〉 denotes functional integration over the gluon field,
and �q is the momentum transfer (p1 − p3) projected onto
the transverse plane. Of course the approximation makes
sense only if |�q| � |�p|.

In the limit of high energies we have helicity conserva-
tion,

ū(p3)γµu(p1)ū(p4)γµu(p2) −→
s→∞ 2sδλ3λ1δλ4λ2 , (18)

where λi are the helicities of the quarks and s = (p1+p2)2.
In the following we can thus ignore the spin degrees of
freedom.

In order to come to the nucleon–nucleon scattering am-
plitude we first consider the scattering of two groups of
three quarks moving on parallel light-like world lines, each
of which has the form

Γ̂ a1 (x0,�b/2 + �xa1 , x
3 = x0),

Γ̂ a2 (x0,−�b/2 + �xa2 , x
3 = −x0), a = 1, 2, 3. (19)

In order to ensure that these quark clusters asymptot-
ically form colour singlet states all colours are parallel-
transported in the remote past and future to a reference
point of the cluster and there contracted antisymmetri-
cally. This leads to the following S-matrix element [69]
for scattering of colour-neutral clusters,

S
(
�x1

1, �x
2
1, �x

3
1, �x

1
2, �x

2
2, �x

3
2
)
=

1
36

1
Z1Z2

×
〈
εαβγ

(
V1

1
)
αα′
(
V2

1
)
ββ′
(
V3

1
)
γγ′ εα′β′γ′ερµν

(
V1

2
)
ρρ′

× (V2
2
)
µµ′
(
V3

2
)
νν′ ερ′µ′ν′

〉
. (20)

The non-Abelian phase factors Va
i are defined as in (15)

with the �-shaped integration paths Γi as indicated in

�
2

�
3

�
1

Fig. 4. The paths in a colour-neutral three-quark cluster

~R 1
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~R 2

1

~R 3
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~R 1

2
~R 2

2

~b

~R 3

2

Fig. 5. The positions of the quarks in transverse space

Fig. 4 for one cluster. The Zi denote again the wave func-
tion renormalization for the respective clusters which in
lowest order can be set equal to one. We introduce the
reduced scattering amplitude J related to the S-matrix
element for the scattering of quark clusters,

J(�x1
1, �x

2
1, �x

3
1, �x

1
2, �x

2
2, �x

3
2) = S(�x1

1, �x
2
1, �x

3
1, �x

1
2, �x

2
2, �x

3
2) − 1.

(21)
The differential nucleon–nucleon cross section is ob-

tained from the gauge invariant scattering amplitude T (s,
t) via (2). The odderon contribution TO(s, t) to the scat-
tering amplitude T (s, t) is computed by integrating over
the transverse coordinates with a suitable transverse wave
function ψ,

TO(s, t) = 2is
∫

d2be−i�q·�b
∫

d6R1d6R2|ψ(R1)|2|ψ(R2)|2

× J(�x1
1, �x

2
1, �x

3
1, �x

1
2, �x

2
2, �x

3
2), (22)

where the colour indices in (21) are symmetric, and Ri

denotes the set of positions of the quarks relative to the
centre of nucleon i, and �b is the impact vector between the
two nucleons (see Fig. 5),

Ri =
(
�R1
i , �R

2
i , �R

3
i

)
, �xa1 =

�b

2
+ �Ra1 , �xa2 = −

�b

2
+ �Ra2 . (23)

For a perturbative evaluation of three gluon exchange
we expand Va

i in (20) up to order g3. Expanding the ma-
trix valued path integral in generators τ of su(3),∫

Γa
i

dzµBµ(z) = B̂ca,iτ
c, (24)
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we obtain

(Va
i )αβ = δαβ − igB̂ca,iτ

c
αβ − 1

2
g2B̂ca,iB̂

c′
a,i(τ

cτ c
′
)αβ

− i3

3!
g3B̂ca,iB̂

c′
a,iB̂

c′′
a,i(τ

cτ c
′
τ c

′′
)αβ + O(g4). (25)

In principle we have to take into account path ordering in
the integral (24). But since we are only interested in the
odderon contribution, which is symmetric in the colour
indices, we may discard it here. To that order we also do
not need to take into account the parallel transporters
from the reference points to the light-like paths and we
have set Zi = 1.

The lowest order three gluon exchange contribution to
(20) is obtained by pairing three fields of group (1) with
three of group (2). In each group we have three possibili-
ties:
(a) two quarks are not involved;
(b) one quark is not involved;
(c) all quarks are involved.
We consider first the respective colour tensors Ca, Cb, Cc.
For case (a) we have

Ca
cc′c′′ = εαβγεα′β′γ′δαα′δββ′(τ cτ c

′
τ c

′′
)γγ′

=
1
2
dcc′c′′ +

i
2
fcc′c′′ , (26)

where f are the structure constants of su(3) and d the
symmetric constants occurring in the anti-commutators.
For case (b) we obtain in the same way the colour factor

Cb
cc′c′′ = −1

4
dcc′c′′ − i

4
fcc′c′′ , (27)

and for the case where all quarks in the nucleon occur in
pairings

Cc
cc′c′′ =

1
2
dcc′c′′ . (28)

Only the symmetrically coupled colours contribute to
C = −1 exchange. Since in the treatment of DL only case
(c) was considered they automatically had only a negative
charge parity contribution (see above). We are only inter-
ested in the C = −1 contribution and because of the sym-
metry the path ordering has no influence. This simplifies
the calculation considerably, since now we can perform the
integrations along the light-like paths without restriction
and this leads to a projection into the transverse space.
The general structure of a contribution to (20) is therefore
given by the product of two colour factors C given above
and the product of three gluon propagators in transverse
space connecting a quark of group (1) with one of group
(2).

We therefore obtain for the reduced scattering ampli-
tude

J(�x1
1, �x

2
1, �x

3
1; �x

1
2, �x

2
2, �x

3
2)

= g6
3∑

ai,bi=1

K(a1, a2, a3; b1, b2, b3)

× χ(�xa1
1 , �x

b1
2 )χ(�xa2

1 , �x
b2
2 )χ(�xa3

1 , �x
b3
2 ). (29)

�

�

~R
3

~R 2

~R 1

d

=2

=2

Fig. 6. Definition of the angle α characterising the proton
configuration

The factor K is obtained from (20), (21) and (25) tak-
ing into account only colour symmetric gluon states. The
corresponding contractions and the combinatorial factors
arising in the sum over indices in (29) have been calculated
in [63,70]. We refer the reader to [70] for the somewhat
cumbersome details. χ is the gluon propagator in trans-
verse space,

χ(�x, �y) =
∫

d2k

(2π)2
1

�k2 +m2
e−i�k·(�x−�y) (30)

=
1
2π
K0 (m |�x− �y|) , (31)

where K0 is the modified Bessel function. The single dia-
grams are infrared divergent. In order to regularise them
we have introduced a gluon mass m, which is possible in
LO approximation. In the final gauge invariant expressions
we can set the gluon mass to zero.

For the quark density in the nucleon we make the sim-
ple ansatz∣∣∣ψ(�R1, �R2, �R3)

∣∣∣2 (32)

=
2
π

1
S2
p

exp
(

−2R2
1

S2
p

)
δ2(�R2 − Mβ

�R1)δ2(�R3 − M−β �R1),

where

Mβ =
(
cosβ − sinβ
sinβ cosβ

)
and β = π−α/2. The quantity Sp determines the electro-
magnetic radius of the nucleon. We choose Sp = 0.8 fm in
the range given in [70,71]. The meaning of the angle α is
illustrated in Fig. 6. The value α = 2π/3 corresponds to a
Mercedes star configuration of the quarks in the nucleon.
α = 0 corresponds to a quark–diquark picture of the nu-
cleon with an exactly point-like diquark. For small angles
α we can still speak of a diquark–cluster in the nucleon,
and we call the distance d between the two quarks in such
a cluster the diquark size; see Fig. 6. With the wave func-
tion (32) one then obtains for the average diquark size
〈d〉

〈d〉 =
√
π

2
sin
(α
2

)
Sp. (33)

3 Results

In the following we use the Donnachie–Landshoff fit as a
framework for confronting different models for the cou-
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Fig. 7. Differential cross section for
elastic pp scattering calculated using
different couplings of the odderon to
the proton: the original Donnachie–
Landshoff fit (dotted), our geometri-
cal model for the proton (solid), and
the Fukugita–Kwieciński (FK, long-
dashed) and Levin–Ryskin (LR, short-
dashed) impact factors

pling of the odderon to the proton with the pp and pp̄
elastic scattering data in the dip region. This is done by
replacing the odderon contribution TO to the scattering
amplitude T in the DL fit by the other models for TO
discussed in Sects. 2.2 and 2.3. The integrations in the
calculation of the differential cross section are performed
numerically.

The results for the differential cross section in the dip
region are shown in Fig. 7 together with the relevant data.
For comparison we also show the Donnachie–Landshoff fit
described already in Sect. 2.1 as the dotted line in this
figure.

The solid line in Fig. 7 represents the result obtained
with the geometric model for the proton described in
Sect. 2.3. It almost coincides with the DL fit and gives a
satisfactory description of all available data. We have fixed
the value of the strong coupling at αs = 0.4 and then ad-
justed the angle α characterising the proton configuration.
The optimal description of the data is obtained for α =
0.14π, corresponding to an average diquark size of 0.22 fm.
For other choices of the average diquark size (or equiva-
lently of the angle α) and fixed αs = 0.4 the description
of the data becomes much worse as is illustrated in Fig. 8
for one centre-of-mass energy, s1/2 = 44.7GeV. The situ-
ation is very similar for the other centre-of-mass energies.
With increasing average diquark size 〈d〉 the minimum of
the differential cross section moves towards smaller t. At
the same time the depth of the dip changes in such a way

√
s = 44.7 GeV

0.36 fm

0.26 fm

0.13 fm

0.22 fm

−t [GeV2]

d
σ
/d
t
[m

b/
G
eV

2 ]

2.221.81.61.41.210.80.60.4

0.1

0.01

10−3

10−4

10−510−5

Fig. 8. Dependence of the differential cross section on the
average diquark size 〈d〉 chosen in our geometric model of the
proton for fixed coupling constant αs = 0.4

that the optimal value of 〈d〉 can be determined with only
a small uncertainty.

The parameters αs, α, and Sp are of course strongly
correlated in their effect on the differential cross section.
Since Sp is rather strictly constrained by the electromag-
netic size of the nucleon we do not vary it here. The con-
straints on the other two parameters in our model, on the
other hand, are only weak. The correct value of the strong
coupling constant αs is not known precisely in the dip re-
gion but has a strong effect on the cross section as it enters
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Fig. 9. Dependence of the differential cross section obtained
from the Fukugita–Kwieciński impact factor on the choice of
αs

in the third power on the amplitude level already. The cor-
rect value for the angle α is even less constrained, and also
the variation of α has a strong effect on the cross section.
This is particularly true for small values of α (or small
diquark sizes), which are known to imply a strong sup-
pression of the amplitude. In the framework of our present
investigation it is obviously not possible to determine αs
and the angle α independently. We have therefore deter-
mined the optimal value for α also for other choices of αs
than the one mentioned above. For the choice αs = 0.3,
for instance, we find that the best description of the data
results for α = 0.22π, corresponding to an average di-
quark size of 〈d〉 = 0.34 fm. Choosing αs = 0.5 instead,
we find an optimal value of α = 0.095π, corresponding
to 〈d〉 = 0.15 fm. We would like to point out that the re-
sulting sizes of the diquark cluster in the nucleon are thus
rather small for all reasonable choices of αs at the rele-
vant momentum scale in the dip region. A Mercedes star
configuration in the proton would in fact imply an unre-
alistically small value of αs � 0.17. This result of course
assumes that LO perturbation theory can be applied in
the dip region.

We now turn to the models for the odderon–proton
impact factor described in Sect. 2.2. Both models contain
two parameters one of which is the strong coupling αs.
The other one is in the case of the Fukugita–Kwieciński
(FK) model the parameter A = mρ/2, in the case of the
Levin–Ryskin (LR) model it is the parameter Rp. The
latter parameters are again related to the proton size and
should thus be considered strongly constrained. We there-
fore keep them at the values given in the original papers
(as quoted in Sect. 2.2) and vary only αs. The differen-
tial cross section obtained with the Fukugita–Kwieciński
model (7) for the impact factor is shown as the long-
dashed curve in Fig. 7. It gives an equally good description
of the data as the DL fit and as our geometric model of
the proton. In order to obtain this curve we have chosen
αs = 0.3 instead of the value αs = 1.0 originally proposed
in [66]. Had we chosen that value instead, the resulting
differential cross section would dramatically overshoot the
data and not even show a dip structure, as is illustrated

Impact factor (LR)
Impact factor (FK)

Our model
DL

−t [GeV2]

d
σ
/d
t
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b/
G
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2.221.81.61.41.210.80.60.4
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10−3

10−4

10−5

Fig. 10. Differential cross section for elastic pp̄ scattering at
s1/2 = 53GeV as calculated using different couplings of the
odderon to the proton: the original Donnachie–Landshoff fit
(dotted), our geometrical model for the proton (solid), and
the Fukugita–Kwieciński (FK, long-dashed) and Levin–Ryskin
(LR, short-dashed) impact factors; data taken from [5]

for one centre-of-mass energy (s1/2 = 44.7GeV) in Fig. 9.
Also the Levin–Ryskin model (8) for the impact factor
leads to a good description of the data when the strong
coupling constant is chosen as αs = 0.5. The correspond-
ing differential cross section is shown as the short-dashed
curve in Fig. 7. Also in this case the dependence of the
cross section on αs is very strong, actually being the same
as in the case of the FK model as can easily be seen from
(6).

Finally, we turn to the differential cross section for
elastic pp̄ scattering. Unfortunately, sufficiently many data
points are available only for one centre-of-mass energy in
the ISR range, s1/2 = 53GeV. Our results for that energy
are shown in Fig. 10. Here we have used the same parame-
ters as for the curves in Fig. 7. Again, our geometric model
as well as the two models for the impact factors lead to a
description of the data which is as good as the Donnachie–
Landshoff fit, producing a shoulder rather than the dip
observed in pp scattering.

In summary we can say that the experimental data
available in the dip region are by far not precise enough
to distinguish between different models for the coupling of
the odderon to the proton. All models for that coupling
and the corresponding models for the proton structure
lead to a satisfactory description of the data when the
respective parameters are chosen appropriately. But for
a given model these parameters are quite strongly con-
strained by the data. This applies in particular to the value
of αs in the two models using impact factors.

4 Conclusions

The only clear experimental evidence for the existence of
an odderon comes from measurements of the differential
cross section for high energy elastic pp and pp̄ scattering
in the dip region at around |t| � 1.3GeV2. The odderon
contribution to this process is expected to be sensitive to



570 H.G. Dosch et al.: The odderon in high energy elastic pp scattering

the proton structure. In the present paper we have stud-
ied different models for the odderon–proton coupling. As
a framework we have used the Donnachie–Landshoff fit
which successfully describes all available data for this pro-
cess, and we have replaced the odderon contribution to
this fit by the respective model. We have taken two mod-
els for the odderon–proton coupling from the literature.
These two models are based on impact factors in momen-
tum space. In addition, we have constructed a geometric
model for the proton in which the effect of a possible di-
quark cluster can be studied. In all three cases the odderon
is modelled by perturbative three gluon exchange in the
C = −1 channel.

We find that all models for the odderon–proton cou-
pling give very similar results if the model parameters, in
particular the strong coupling constant, are chosen appro-
priately. All models work as well as the original Donnachie
–Landshoff fit. The available data cannot distinguish be-
tween the different models. But for a given model the data
impose very strong constraints on the parameters of that
model. Using our geometric model we find that the av-
erage size of the diquark cluster in the proton is quite
small, 〈d〉 < 0.35 fm. This result is obtained when assum-
ing that reasonable values for strong coupling constant αs
in the dip region are larger than 0.3. In the nonperturba-
tive model used in [63] such a small diquark is sufficient to
explain the absence of an odderon signal in the ratio of the
real to imaginary part in the forward direction [4]. This
can be understood easily. In the nonperturbative model
for the IR behaviour of QCD soft gluons dominate and
therefore the resolution is much coarser.

It turns out that in the models based on odderon–
proton impact factors the data impose rather strong con-
straints on the choice of the strong coupling constant αs
which appears as a parameter in these models. In the case
of the impact factor proposed by Levin and Ryskin we
find that αs has to be chosen as 0.5, i.e. a value rather
close to the 1/3 proposed originally.

Of particular interest is the model for the odderon–
proton impact factor proposed by Fukugita and Kwiec-
iński. Recently, this model has been used for the calcu-
lation of different processes, among them the diffractive
photo- and electroproduction of ηc mesons at HERA. This
process is currently considered to be one of the best possi-
ble ways to observe the odderon experimentally. The cor-
responding calculations [48–50] use a rather large value
αs = 1 in the impact factor. In order to describe the data
for pp elastic scattering with this impact factor, however,
we find that αs needs to be chosen as 0.3. This observa-
tion indicates that the current estimates for diffractive ηc
production at HERA might be somewhat optimistic.

In our study we have assumed that the odderon can
be modelled by perturbative three gluon exchange. How-
ever, the dip region of pp elastic scattering is located at
momentum transfers t1/2 just slightly above 1GeV, that
is at the lowest edge of the applicability of perturbation
theory. It would therefore be very desirable to study this
process also in the framework of a nonperturbative model.
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O. Nachtmann for helpful discussions.

References

1. L. Lukaszuk, B. Nicolescu, Lett. Nuovo Cim. 8, 405 (1973)
2. D.E. Groom et al. [Particle Data Group Collaboration],
Eur. Phys. J. C 15, 1 (2000)

3. M.A. Braun, hep-ph/9805394
4. C. Augier et al. [UA4/2 Collaboration], Phys. Lett. B 316,
448 (1993)

5. A. Breakstone et al., Phys. Rev. Lett. 54, 2180 (1985)
6. S. Erhan et al., Phys. Lett. B 152, 131 (1985)
7. A. Bohm et al., Phys. Lett. B 49, 491 (1974)
8. E. Nagy et al., Nucl. Phys. B 150, 221 (1979)
9. U. Amaldi, K.R. Schubert, Nucl. Phys. B 166, 301 (1980)
10. A. Donnachie, P.V. Landshoff, Nucl. Phys. B 231, 189

(1984)
11. P. Gauron, B. Nicolescu, E. Leader, Phys. Rev. Lett. 54,

2656 (1985)
12. P. Gauron, B. Nicolescu, E. Leader, Phys. Lett. B 238,

406 (1990)
13. B.G. Zakharov, Sov. J. Nucl. Phys. 49, 860 (1989)

[Yad. Fiz. 49 (1989) 1386]
14. E.M. Levin, M.G. Ryskin, Phys. Rept. 189, 267 (1990)
15. P. Desgrolard, M. Giffon, L.L. Jenkovszky, Z. Phys. C 55,

637 (1992)
16. E.R. Berger, O. Nachtmann, Eur. Phys. J. C 7, 459 (1999)

[hep-ph/9808320]
17. E. Leader, T.L. Trueman, Phys. Rev. D 61, 077504 (2000)

[hep-ph/9908221]
18. P. Desgrolard, M. Giffon, E. Martynov, E. Predazzi, Eur.

Phys. J. C 16, 499 (2000) [hep-ph/0001149]
19. P. Gauron, L.N. Lipatov, B. Nicolescu, Z. Phys. C 63, 253

(1994)
20. P. Gauron, L. Lipatov, B. Nicolescu, Phys. Lett. B 304,

334 (1993)
21. N. Armesto, M.A. Braun, hep-ph/9410411
22. N. Armesto, M.A. Braun, Z. Phys. C 75, 709 (1997) [hep-

ph/9603218]
23. M.A. Braun, hep-ph/9801352
24. M.A. Braun, hep-ph/9804432
25. J. Wosiek, R.A. Janik, Phys. Rev. Lett. 79, 2935 (1997)

[hep-th/9610208]
26. R.A. Janik, J. Wosiek, Phys. Rev. Lett. 82, 1092 (1999)

[hep-th/9802100]
27. J. Bartels, L.N. Lipatov, G.P. Vacca, Phys. Lett. B 477,

178 (2000) [hep-ph/9912423]
28. J. Bartels, Nucl. Phys. B 175, 365 (1980)
29. J. Kwiecinski, M. Praszalowicz, Phys. Lett. B 94, 413

(1980)
30. L.N. Lipatov, Phys. Lett. B 309, 394 (1993)
31. L.N. Lipatov, JETP Lett. 59, 596 (1994) [Pisma Zh. Eksp.

Teor. Fiz. 59, 571 (1994)] [hep-th/9311037]
32. L.D. Faddeev, G.P. Korchemsky, Phys. Lett. B 342, 311

(1995) [hep-th/9404173]
33. G.P. Korchemsky, Nucl. Phys. B 443, 255 (1995) [hep-

ph/9501232]
34. G.P. Korchemsky, Nucl. Phys. B 462, 333 (1996) [hep-

th/9508025]
35. G.P. Korchemsky, Nucl. Phys. B 498, 68 (1997) [hep-

th/9609123]



H.G. Dosch et al.: The odderon in high energy elastic pp scattering 571

36. G.P. Korchemsky, I.M. Krichever, Nucl. Phys. B 505, 387
(1997) [hep-th/9704079]

37. G.P. Korchemsky, hep-ph/9801377
38. R.A. Janik, Acta Phys. Polon. B 27, 1275 (1996) [hep-

th/9604162]
39. M. Praszalowicz, A. Rostworowski, Acta Phys. Polon. B

30, 349 (1999) [hep-ph/9805245]
40. G.P. Korchemsky, J. Wosiek, Phys. Lett. B 464, 101 (1999)

[hep-ph/9908304]
41. L.N. Lipatov, Nucl. Phys. B 548, 328 (1999) [hep-

ph/9812336]
42. H.J. De Vega, L.N. Lipatov, Phys. Rev. D 64, 114019

(2001) [hep-ph/0107225]
43. S.E. Derkachov, G.P. Korchemsky, A.N. Manashov, Nucl.

Phys. B 617, 375 (2001) [hep-th/0107193]
44. G.P. Korchemsky, J. Kotanski, A.N. Manashov, hep-

ph/0111185
45. E.A. Kuraev, L.N. Lipatov, V.S. Fadin, Sov. Phys. JETP

45, 199 (1977) [Zh. Eksp. Teor. Fiz. 72, 377 (1977)]
46. I.I. Balitsky, L.N. Lipatov, Sov. J. Nucl. Phys. 28, 822

(1978) [Yad. Fiz. 28, 1597 (1978)]
47. J. Bartels, C. Ewerz, JHEP 9909, 026 (1999) [hep-

ph/9908454]
48. J. Czyzewski, J. Kwiecinski, L. Motyka, M. Sadzikowski,

Phys. Lett. B 398, 400 (1997) [Erratum-ibid. B 411, 402
(1997)] [hep-ph/9611225].

49. R. Engel, D.Y. Ivanov, R. Kirschner, L. Szymanowski, Eur.
Phys. J. C 4, 93 (1998) [hep-ph/9707362]

50. J. Bartels, M.A. Braun, D. Colferai, G.P. Vacca, Eur. Phys.
J. C 20, 323 (2001) [hep-ph/0102221]
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